US009313236B2

a2 United States Patent

Herzog et al.

US 9,313,236 B2
Apr. 12,2016

(10) Patent No.:
(45) Date of Patent:

(54) DETERMINING AN EFFICIENT KEEP-ALIVE
INTERVAL FOR A NETWORK CONNECTION

(71) Applicant: MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA
(US)
(72) Inventors: Shai Herzog, Bellevue, WA (US);
Rashid Qureshi, Redmond, WA (US);
Jorge Raastroem, Sammamish, WA
(US); Xuemei Bao, Redmond, WA (US);
Rajeev Bansal, Redmond, WA (US);
Qian Zhang, [ssaquah, WA (US); Scott
Michael Bragg, Snoqualmie, WA (US)
(73) Assignee: MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 226 days.
(21) Appl. No.: 13/764,663
(22) Filed: Feb. 11, 2013
(65) Prior Publication Data
US 2013/0151719 Al Jun. 13, 2013
Related U.S. Application Data
(63) Continuation of application No. 12/480,560, filed on
Jun. 8, 2009, now Pat. No. 8,375,134.
(51) Imt.ClL
GO6F 15/16 (2006.01)
HO4L 29/06 (2006.01)
HO4L 29/08 (2006.01)
(52) US.CL
CPC HO04L 65/1066 (2013.01); HO4L 67/14
(2013.01); HO4L 67/141 (2013.01);
(Continued)

iz 5
CUERT WETWORKING DEVICE

(58) Field of Classification Search
CPC ..ccovvveriivna HO4L 45/54; HO4L 29/12009
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,120,688 B1* 10/2006 Nguyenetal. 709/224
7,152,111 B2 12/2006 Allred et al.

(Continued)
OTHER PUBLICATIONS

“Douglis, et al”, “Adaptive Modem Connection Lifetimes”, 1999
USENIX Annual Technical Conference, Jun. 9, 1999, 24 Pages. See
p- 21 for publication date verification.

(Continued)

Primary Examiner — Umar Cheema
Assistant Examiner — Anthony Rotolo
(74) Attorney, Agent, or Firm — Judy Yee; Micky Minhas

(57) ABSTRACT

Systems and methods for use in communication between a
clientand a server, via a networking device, are provided. The
method may include sending a request to establish a data
connection from the client to the server via the networking
device, setting a data connection keep-alive interval for the
data connection to a predetermined safe value, and sending a
request to establish a test connection between the client and
the server. The method may further include determining an
efficient keep-alive interval for communication between the
client and server via the networking device, using the test
connection, setting the data connection keep-alive interval to
the efficient keep-alive interval determined using the test
connection, and uploading the efficient keep-alive interval
from the client to the server in an efficient keep-alive interval
notification message, for communication to other clients con-
nected to the server.

15 Claims, 4 Drawing Sheets

u
Ve

T BROVIDE DATA
1 7 :D STORE
- TWORK L
~ P 24
FOR DATA GONNEC el
% REGUEST
i JAND CUERY
Je- — — -RECEIVE EFFICIENT KA INTERVA 7 — — — DATA STORE
2 FOR CACHED
1F APN 1S NOT IN THE CACHE EFFICENT KA
[~ SEND REQUEST FOR TEST CONNECTION — | INTERVAL
210
GETERHINE EFFICIENT
WTERVAL UTLZNG
“THE TEST CONNECTION S
3 OSE TEST
214 \
SETTG THE DATA (
CONHECTICN KA INTERVAL 70 THI
EFFICENT KA MTERVAL
26
| UPLOAD THE EFFICIENT KA { Vil
CACHE APN
L1 IDENTIFYING DATA AND EFFICIENT
A 2 KA INTERVAL
FODITORAL | |~ “HPFLVERRCERT RN INTERVAL YD~
GLENT DOITIONAL GLIENTS
I AND SERVER VIANETWORKING DEVICE [}
b\l o
| SEMD REQUEST FOR DATA CONECTION /™ 7 24
i 4
NOTIFICATION MESSAGE IFAPN IS IV
P Y EFEICIENT KA RTERVAL 56 THE CACHE
L roAchrTowa, cUS comEcTho A
< ITIONAL CLIENTS (1 - FFICENT ki
T THROU R RELATED ™ INTERVAL
[— NETWORKING DEVICE !
N ernorne 2
A 20
\ ; 752
e o == ~UPLATED EEFICIENT KA INTERVAL /o =

US 9,313,236 B2
Page 2

(52) US.CL

CPC

(56)

7,236,781
7,426,569
7,460,556
7,568,040
7,668,100
7,675,916
7,693,084
7,729,273
7,729,357
7,756,155
7,778,623
7,899,921
7,965,637
7,978,630
8,194,636
2005/0050197
2006/0123119
2007/0112954
2007/0140159
2007/0140193
2007/0214256
2007/0233815
2008/0165796
2008/0205288
2008/0225865
2009/0154474
2009/0271517

H04L67/145 (2013.01); HO4L 67/28

(2013.01); HO4L 67/2842 (2013.01); HO4L
69/16 (2013.01); HO4L 69/163 (2013.01);

HO04L 69/28 (2013.01)

References Cited

U.S. PATENT DOCUMENTS

B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Bl
B2
Bl

6/2007
9/2008
12/2008
7/2009
2/2010
3/2010
4/2010
6/2010
6/2010
7/2010
8/2010
3/2011
6/2011
7/2011
6/2012
*3/2005
6/2006
5/2007
6/2007
* 0 6/2007
9/2007
10/2007
7/2008
8/2008
9/2008
6/2009
10/2009

Patil et al.

Dunk

Duggirala et al.
Townsley et al.
Balasaygun et al.
Kempe

Herzog

Knapik et al.
Strater et al.
Duggirala et al.
Araki et al.

Hill et al.

Trivedi et al.
Bengtsson et al.
Doherty et al.
Boydetal.cccooeeene 709/224
Hill et al.
Ramani et al.
Eronen et al.
Dosaetal. ..o 370/338
Castaneda et al.
Luetal.
Martinez et al.
Herzog

Herzog

Arima et al.
Naylor et al.

2010/0046523 Al* 2/2010 Mekkattuparamban
etal. ... 370/395.31
2012/0108225 Al* 5/2012 Lunaetal. ... 455/418
2012/0110173 Al* 5/2012 Lunaetal. ... 709/224
OTHER PUBLICATIONS

Chapter 7—Web Server Scalability, Internet Information Services
(IIS) 6.0 Resource Kit, Microsoft Corporation, Jul. 27, 2009, 58
Pages. See p. 54 for publication date verification.

“Wu, et al”, “A Petri Net Approach to Analyze the Effect of Persistent
Connection on the Scalability of Web Services”, 3rd International
Conference on Communication Systems Software and Middleware
and Workshops, 2008. COMSWARE 2008, Jan. 2008, 6 Pages. Seep.
5 for publication date verification.

Zheng, Rong, “Design, Analysis and Empirical Evalution of Power
Management in Multi-Hop Wireless Networks”, University of Illi-
nois at Urbana-Champaign, May 2004, 160 pages. See p. 159 for
publication date verification.

“Re: [p2p-hackers] iGlance and Adaptive KeepAlives,” David Bar-
rett, http://www.mail-archive.com/p2p-hackers@lists.zooko.com/
msg02137 html, May 10, 2009, 3 pages. See p. 1 for publication date
verification.

“Software engineering, design and implementation of emergent net-
works (P2P)”, David Barrett, http://comments.gmane.org/gmane.
network peer-to-peer.p2p-hackers/2480, May 11, 2008, 6 pages, See
pp. 1 for publication date verification.

Price, R. et al., “Adapting to NAT timeout values in p2p Overlay
Networks”, Parallel & Distributed Processing, Workshops and Phd
Forum 2010, Apr. 2010, 9 pages. See p. 8 for publication date veri-
fication.

Price, R. et al., “Still Alive: Extending Keep-Alive Intervals in P2P
Overlay Networks”, Mobile Networks and Applications, vol. 17,
Issue 3, pp. 378-394, Jun. 2012, 12 pages. See p. 11 for publication
date verification.

* cited by examiner

US 9,313,236 B2

FINA0Y

NOULNGRLSIO)

5¢

Sheet 1 of 4

ERnin g
NOLLYOINNWNGD

AYHOOH] - Ve
INTREDYNYI L
NOLLOTNNG D g7

G HAAMES

Apr. 12,2016

AEVHOLS
SO HIAYAS
HOSEI 0

HAAHTES
REER e

L Old

-3

H 257

®

::vw NOLLOINNGD 1SAL [

mzo_w ANNOS TYNOILLIOCOY HiNje

w1 LNTITO TYNOILIGOY UN |2

G

BNOILDINNOD TNOILIAOY i) b
25/

8hn

»| N0 TNOLLIGOY sl LS

, ﬁ{moom&
\NOLLYDTddy ONDIMOMLIN] |

I E I
FEOYHOLS SS9 m.r HOSEAD0H |
RN @zgxo,&az vy 2

FINGONW
NOLLYNINEEL30)
FHION
LN ﬁmﬂaq v

FINOON
NOLLYOINTIAROD

WYHO0Nd
 NOLLY O I ddY ATy 330
ANOWIN INITD 8L

mx

2
eI “
INTTD

oz 4

U.S. Patent

y17

NHOMLIN |

917

F0YHOLS
SOYIALANTTO

L
ANIND

U.S. Patent

Apr. 12,2016 Sheet 2 of 4

A8
| NETWORKING DEVICE |
i

AT
TWORK

US 9,313,236 B2

201

FROVIDE DATA
STORE

I 202
SEND REQUEST FOR DATA CONNECTION e

A

e e e =RECEIVE EFFICIENT KA INTERVAL P oo oo oo
.»’23%

fF APN IS NOT IN THE CACHE
SEND REQUEST FOR TEST CONNECTION

210
/

DETERMINE EFFICIENT
A INTERVAL UTILZING
THE TEST CONNECTION 3

SETTING THE DATA
CONNECTION KA INTERVAL TO THE
EFFICIENT KA INTERVAL

/,-216
UPLOAD THE BEFFICIENT KA
INTERVAL AND NETWORK DEVICE

IDENTIFYING DATA

54

ADDETEONA !

APPLY EFFICIENT KA INTERVAL TO T
CONNECTIONS BETWEEN ADDITIONAL CLIENTY

CLIENT

i
§
i AND SERVER VIA NETWORKING DEVICE
f
f
f

SEND REQUEST FOR DATA CONECTION/” _
WITH ASSOCIATED NETWORKING DEVICE—f—1p-
NOTIFICATION MESSAGE

t
e
- VPR
APPLY EFFICIENT KA INTERVAL _,/”‘12’3 :
TO ADDHTIONAL CLIENTS CONNECTED i

f THROUGH SAME OR RELATED E
E - NETWORKING DEMICE 1
j !,-JZZZS
‘ERR’”}Q MESSAGE e
\ /} =
UFDATE REQUEST

/2%2

i — — =UPDATED E:FF CIENT KA INTERVAL— o e o]

204
RECEIVE
REQUEST

AND QUERY

DATA STORE

FOR CACHED

EFFICIENT KA
INTERVAL

~218

/

CACHE APN
AND EFFICIENT
KA INTERVAL

2

FAPNISIN
THE CACHE
FROVIDE

EFFICIENT KA
INTERVAL

FIG. 2

AN

U.S. Patent Apr. 12,2016 Sheet 3 of 4 US 9,313,236 B2

s N
(s) FIG. 3

SET TEST CONNECTION | 302
KEEP-ALIVE INTERVAL =
SAFE VALUE

SET DATA CONNECTION KEEP ALIVE | 304
—»/INTERVAL = TEST CONNECTION KEEP
ALIVE INTERVAL

A 4
INCREMENT 306
TEST CONNECTION KEEP +/
ALIVE INTERVAL

¥
SEND KEEP-ALIVE MESSAGE L %8
AFTER TEST CONNECTION NO-.
YES KEEP-ALVE INTERVAL ON '
TEST CONNECTION
¥
S ACR\ 310
-------------------------------------- {RECEIVED >/
\ ?
\f/
NO
¥ 312
CHECK STATUS
OF DATA CONNECTION
— DECREMENT | 318 L TEST
¥ 314 TEsT " CONNECTION
— DATAACKJ VESsl CONNECTIO L’ KEEP ALIVE INTERVAL
- RECEIVED? <= DATA CONNECTION
KEEP-ALIVE
FTERVAL KEEP ALIVE
! INTERVAL
NO .
// ”““’NE"’I‘WE)“E’%R """ N 346)
FAILURE = NO ‘J YES-

et

] Y g
/OUPUT VALUE=DATA™, 322
| CONNECTIONKEEP
__ALIVE INTERVAL

US 9,313,236 B2

Sheet 4 of 4

Apr. 12,2016

U.S. Patent

£

g g 4 H %

& i :] 1 i

h J f i f U
Teiviaw s e ik

TYAYALNG WA NOILOINNOO YIVG ¢ 906
TYASALNG Yo INSIOIA3 ?,;,s/V ;;;;; w ooy
= INWA LNdLNO W 206~

e o e m oy
ggggggggggggggggggggggg h.....is.....is.....is........s.....,i.....i.......i...........................“lm.«\x
4 0g /T

AT LN Y NOILDINNGD 1831

TYAMEING LOC-3INL NOILOINNOD
SIALC ONIAHOMLIN

TYALSLNT ¥

US 9,313,236 B2

1
DETERMINING AN EFFICIENT KEEP-ALIVE
INTERVAL FOR A NETWORK CONNECTION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/480,560, filed Jun. 8, 2009, entitled DETER-
MINING AN EFFICIENT KEEP-ALIVE INTERVAL FOR
ANETWORK CONNECTION, the entire contents of which
are herein incorporated by reference for all purposes.

BACKGROUND

Networking devices, such as network address translation
(NAT) devices, firewall devices, etc., maintain state for each
connection they serve. As a mechanism to cleanup connection
state, the networking devices may time-out when a connec-
tion between a client and a server remains inactive for a
predetermined period of time, causing the device to terminate
service for this connection. To prevent the networking devices
from timing out due to inactivity, a fixed keep-alive interval
may be used. The fixed keep-alive interval may be shorter
than most or all of the known time-out values corresponding
to networking devices on the market. However, the variation
in the time-out values of different types or differently config-
ured networking devices may be substantial. Thus, when
certain networking devices are utilized, there may be a large
discrepancy between their individual time-out value and the
lowest common denominator fixed keep-alive interval. This
discrepancy may significantly impact the battery life of the
client, due to the frequent and superfluous packets sent to and
from the networking device. A significant amount of network
traffic may also be generated when a fixed keep-alive interval
is applied to a large number of clients, increasing network
operating costs. Thus, a fixed keep-alive interval may have a
negative impact on the computing system as a whole.

To decrease power consumption and increase networking
efficiency within such a system the keep-alive interval may be
increased to fit with individual time-out characteristics of
different devices. One technique which may be used to
increase the keep-alive interval involves establishing a con-
nection between a client and a server via a networking device
such as a NAT device, firewall, load balancer etc., and incre-
mentally increasing the keep-alive interval until the network-
ing device times out and drops the connection. Subsequent to
the time-out, a preceding keep-alive interval which has not
failed is used by the client, in an attempt to maintain a per-
sistent connection and over time the process repeats itself
with new attempts to increase the keep-alive interval.

However, using the longest keep-alive interval that has not
failed in a test may result in inefficiencies and poor user
experience since routine network failure may be incorrectly
attributed to time-outs, and repeating the test periodically
means a periodic break in the connection would be noticeable
to the user. This may lead to periods of unneeded network
traffic between the client and server, resulting in a poor user
experience, poor battery performance, etc. These problems
may be multiplied across thousands of users in the user base
for a service provider to mobile clients.

SUMMARY

Systems and methods for use in communication between a
clientand a server, via a networking device, are provided. The
method may include sending a request to establish a data
connection from the client to the server via the networking

10

15

20

25

30

35

40

45

50

55

60

65

2

device, setting a data connection keep-alive interval for the
data connection to a predetermined safe value, and sending a
request to establish a test connection between the client and
the server. The method may further include determining an
efficient keep-alive interval for communication between the
client and server via the networking device, using the test
connection, setting the data connection keep-alive interval to
the efficient keep-alive interval determined using the test
connection, and uploading the efficient keep-alive interval
from the client to the server in an efficient keep-alive interval
notification message, for communication to other clients con-
nected to the server.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter. Furthermore, the claimed subject
matter is not limited to implementations that solve any or all
disadvantages noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic view of one embodiment of a com-
puting system for managing communications between a cli-
ent and a server, via a networking device.

FIG. 2 is a flowchart of one embodiment of a method for
managing communications between a client and a server, via
a networking device.

FIG. 3 illustrates a flowchart of one example method of
implementing a step of determining an efficient keep-alive
interval of the method of FIG. 2.

FIG. 4 illustrates a graph of example keep-alive intervals
for a data connection and a test connection, which have been
determined according to the methods of FIGS. 2-3.

DETAILED DESCRIPTION

FIG. 1 illustrates a schematic depiction of a computing
system 10. The computing system 10 may include a client 12
and a server 14, which are configured to communicate over a
network 17 via a networking device 16. The client 12 and
server 14 may be configured to establish a test connection 48
and a data connection 50 using suitable communications pro-
tocols, such as transmission control protocol (TCP), persis-
tent Hypertext Transfer Protocol (HTTP), etc. The test con-
nection is used to programmatically test network device time-
out and the data connection is used to exchange data between
the client and server and to allow the client to distinguish
between network time-out failure and other unrelated net-
working issues.

By programmatically testing the test connection 48 in the
manner discussed herein, the client 12 may be configured to
determine an efficient keep-alive interval that does not exceed
a connection time out value of the networking device 16,
without interrupting data transmission over the data connec-
tion 50. The client 12 may communicate via server 14 the
efficient keep-alive interval to additional clients connected to
networking devices 16 or related networking devices, so that
those clients avoid redundant calculation of an efficient keep-
alive interval on their own. Exemplary methods utilized to
determine the efficient keep-alive interval, as well as the way
in which the keep-alive interval is propagated throughout the
network to other devices connected to the networking device
16, are discussed with more detail herein with regard to FIGS.
2-3.

US 9,313,236 B2

3

It will be appreciated that client 12 may be a computing
device such as a mobile phone, portable data assistant, laptop
computer, personal media player, desktop computer, etc. As
one example, the client 12 may be included in a private
network having a plurality of additional clients, each of which
connects to a public network via an access point including the
networking device 16. In other embodiments, the client may
be included in a public network.

The client 12 may include a keep-alive application pro-
gram 18 stored on client-side mass storage 19 (e.g., hard
drive, solid state memory, etc.) executable via a client-side
processor 20 using portions of client-side memory 22. The
keep-alive application program is configured to adjust the
keep-alive interval for connections of the client, as described
below. The keep-alive application program 18 may include a
client-side communication module 23 configured to facilitate
communication between the client 12 and the server 14 via
the networking device 16. Additionally, the keep-alive appli-
cation program 18 may include an adjustment module 24 that
is configured to adjust a keep-alive interval on each connec-
tion of the client, and a determination module 25 that is
configured to determine an efficient keep-alive interval based
on the convergence of a test keep-alive interval and a data
keep-alive interval. The detailed functions of the client-side
communication module 23, the adjustment module 24, and
the determination module 25 are discussed in more detail
herein with regard to FIGS. 2-3. It will be appreciated that the
client 12 may include additional application programs which
may be executed via the client-side processor 20. For
example, a browser application program, email application
program, etc., may be executed on the client 12, and may
communicate with server 14 using the data connection 50.

Turning now to the server 14, the server 14 may be a server
oraserver cluster, and may include a connection management
program 26 stored on server-side mass storage 28 and execut-
able via a server-side processor 30 using portions of server-
side memory 32. The connection management program 26
may include a server-side communication module 34 config-
ured to open and manage connections between the client and
server via the network 17, and a distribution module 35 con-
figured to distribute an efficient keep-alive interval deter-
mined from interactions with client 12 to other additional
clients 54 connected to the same networking device 16, or
another related networking device in the same cluster. The
operations of the server-side communications module 34 and
the distribution module 35 are discussed in more detail herein
with regard to FIGS. 2-3.

Now turning to the networking device 16, the networking
device may be configured to facilitate communication
between the client 12 and the server 14. Exemplary network-
ing devices 16 may include one or more of a network address
translation (NAT) device, a firewall device, a load balancer,
and a Gateway GPRS Support Node (GGSN) device, or other
networking device. The networking device 16 may be con-
figured to manage connections between the client and the
server by allowing and disallowing connections, routing data
packets along the connections, etc. Further, the networking
device 16 may be configured to terminate a connection estab-
lished between the client 12 and the server 14 via a time-out
module 39, when the connection remains inactive for a pre-
determined period of time, referred to as a connection time-
out value. The time-out module 39 may be included in a
networking application program 40 stored on mass storage 42
executable via a processor 44 using portions of memory 46 of
the networking device 16. It will be appreciated that, although

10

15

20

25

30

35

40

45

50

55

60

65

4

a single networking device is depicted a plurality of network-
ing devices (e.g. a cluster of related networking devices) may
be utilized.

As discussed above, a test connection 48 and/or a data
connection 50 may be established between the client 12 and
the server 14 via the networking device 16. Typically, the test
connection 48 and the data connection 50 are persistent TCP
connections, which the client 12 is programmed to initiate
with the server 14. Each persistent TCP connection is config-
ured to carry data packets 38 from the client to the server and
vice-versa, and has an associated keep-alive interval which
represents the maximum quiet period on the connection
before the client needs to generate a keep-alive packet (to
maintain the data channel or test the test connection). It will
be appreciated that in an alternative embodiment, the test and
data connections may be set up according to another protocol,
such as persistent HTTP.

The data connection 50 is typically used to carry data back
and forth between the client 12 and server 14, and communi-
cate control information. The test connection 48 is dedicated
to testing network device time-outs and does not generally
carry data. For example, data packets from a browser appli-
cation program or email application program may be sent
over the data connection to the server from the client, but not
over the test connection.

Using the methods described below, the test connection 48
and data connection 50 may be used to determine an efficient
keep-alive interval for the test connection 48 and data con-
nection 50 with the client 12, which in turn may be applied to
additional client connections 52 between server 14 and addi-
tional clients 54.

FIG. 2 illustrates an embodiment of a method 200 for use in
communication between a client and a server, via a network-
ing device. It will be appreciated that method 200 may be
implemented using the hardware and software components of
system 10 described above, or by other suitable hardware
components. At 201, in a preprocessing phase, the method
may include, atthe server, providing a data store configured to
store efficient keep-alive intervals received from the plurality
of clients via respective networking devices. It will be appre-
ciated that step 201 may be performed by implementing the
connection management program 26, illustrated in FIG. 1.

At 202, the method may include sending a request to estab-
lish a data connection from the client to the server via the
networking device. The request may include classification
information such as APN, DNS suffix and subnet of the
requesting client, for use as discussed below. Step 204 may be
performed by implementing the client-side communication
module 23, illustrated in FIG. 1.

At 204, the method may include, at the server, receiving the
request for a data connection from the requesting client, and
querying the data store to determine if a matching cached
efficient keep-alive interval is present in the data store, which
has been received from another client connected to the same
or a related networking device. After receiving the request,
the method may further include, at the server, identifying
from the request at least one of an APN, DNS suffix and
subnet of the requesting client. Thus, querying the data store
may include determining if an efficient keep-alive interval has
been stored for the at least one of the APN, DNS suffix and
subnet of the requesting client. If the cached efficient keep-
alive interval is present, the method may include sending the
cached efficient keep-alive interval from the server to the
requesting client for application to the data connection. If no
cached efficient keep-alive interval is present, the server will

US 9,313,236 B2

5

communicate this fact to the client. Step 204 may be per-
formed by implementing the server-side communication
module 34, illustrated FIG. 1.

At 206, the method may include determining whether a
cached efficient keep-alive interval is received from the
server. If the cached efficient keep-alive interval is received at
the client from the server, then the method may include set-
ting a data connection keep-alive interval for the data connec-
tion to the cached efficient keep-alive interval, and skipping
the remaining steps below, apart from possible application of
error detection and updating steps at 228-232.

Otherwise, if is determined at 206 that a cached efficient
keep-alive interval is not received from the server, then the
method may include setting a data connection keep-alive
interval for the data connection to a predetermined safe value.
As one example, the safe keep-alive interval may be set to a
default value stored at the server and sent from the server to
the client, for example, during establishment of the data con-
nection. As another example, the safe value may be a prede-
termined value stored on the client. It will be appreciated that
step 206 may be performed by implementing the client-side
communication module 23, illustrated in FIG. 1.

At 208, the method may include sending a request to estab-
lish a test connection between the client and the server. Typi-
cally, the request is made if it is determined that the cached
keep-alive interval is not in the data store. Step 208 may also
be performed by implementing the client-side communica-
tion module 23 of FIG. 1.

At 210, the method may include determining an efficient
keep-alive interval for communication between the client and
server via the networking device, using the test connection. It
will be appreciated that step 210 may be performed by imple-
menting various modules included in the keep-alive program
18, illustrated in FIG. 1 and discussed in greater detail herein
with regard to FIG. 3.

At214, the method may include setting the data connection
keep-alive interval to the efficient keep-alive interval deter-
mined using the test connection. It will be appreciated that
step 214 may be performed by implementing the adjustment
module 24, illustrate in FIG. 1.

At 216, the method may include uploading the efficient
keep-alive interval from the client to the server in an efficient
keep-alive interval notification message. In one example, the
efficient keep-alive interval notification message includes
network device identifying data including one or more of
APN and DNS suffix, as well as the determined efficient
keep-alive interval. Step 216 may be performed by imple-
menting the client-side communication module 23 of FIG. 1.
At 218, the method may include, at the server, receiving an
efficient keep-alive interval from the requesting client, and
caching the efficient keep-alive interval in the data store for
availability to other requesting clients. Step 218 may be per-
formed by implementing the server-side communication
module 34, illustrated in FIG. 1.

It will be appreciated that, as described above, client 12
may be one of a plurality of clients connected to the server 14
via the networking device 16, and the method may further
include, as illustrated at 220, applying the efficient keep-alive
interval to connections between additional clients included in
the plurality of clients and the server via the networking
device. Applying the efficient keep-alive interval may
include, as shown at 222, from each of the additional clients,
sending a request to initiate a respective data connection with
the server, and an associated networking device notification
message to identify to the server the networking device via
which the additional client is connected to the server. At 224,
the server may make a determination that the efficient keep-

35

40

45

55

6

alive interval for the connections to the additional clients via
the networking device has been uploaded and is stored at the
server in the data store. In some examples, step 222 may be
performed by implementing the client-side communication
module 23 and step 224 may be performed by implementing
the server-side communication module 34 and the distribu-
tion module 35 illustrated in FIG. 1. It will be appreciated that
the networking device notification message includes APN
and DNS suffix, and the server determination is based on the
APN and DNS suffix and on a client subnet detectable from
the data connection between the client and server. At 226, the
method may include, in response to the server determination
at 224, downloading the efficient keep-alive interval to each
of the additional clients. It will be appreciated that step 226
may be performed by implementing the server-side commu-
nication module 34, illustrated in FIG. 1.

From time to time, a client may detect an error (connection
drops) in a data connection established using an efficient
keep-alive interval received from the server. In response, the
client may open a new data connection to the server, and send
a test message, to determine whether an acknowledgment is
received. If no acknowledgment is received on the new data
connection, the cause of the detected error may be attributed
to network conditions, and the client may close the new
connection and later attempt to establish the data connection
using the same efficient keep-alive-interval. However, if an
acknowledgment is received on the new connection, then the
client may attribute the cause of the detected error to an
erroneous efficient keep-alive interval, which exceeded the
time-out of the networking device. At 228, the method may
include sending an error message from at least one of the
additional clients to the server, indicating that the efficient
keep-alive interval downloaded from the server is resulting in
a connection time-out on a data connection between the cor-
responding client and the server, which may be due to the
networking device connection time-out interval being shorter
than the efficient keep-alive interval currently being applied.

Upon confirming the detected error is not due to network-
ing problems, the client may attempt to request an updated
keep-alive interval from the server. Thus, at 230, the method
may include, after sending the error message from the corre-
sponding client, sending a request for an updated efficient
keep-alive interval to the server from the corresponding cli-
ent. And, at 232, the method may include receiving an
updated efficient keep-alive interval at the corresponding cli-
ent, which has been calculated at the server in response to the
error message from the corresponding client. The client may
check the updated keep-alive interval to determine whether it
is less than the current keep-alive interval on the data connec-
tion on which errors were detected, and if so, the client may
reestablish the data connection with the updated keep-alive
interval. However, if the client determines that the server has
sent an updated keep-alive interval that is equal to or greater
than the current keep-alive interval on the data connection
that has failed, then the client will determine a new keep-alive
value using a test connection, as described at step 210 above.
In some examples, steps 228-232 may be performed by
implementing a communication module included in the cor-
responding client. The communication module may be simi-
lar to the client-side communication module 23, illustrated in
FIG. 1. If no updated efficient keep-alive interval is received
from the server, or if the server otherwise instructs the client
to re-determine the interval, then the client may be configured
to establish (or reestablish) a test connection with the server
and re-determine the efficient keep-alive interval using the
test connection, upon detecting a failure in the data connec-

US 9,313,236 B2

7

tion at the efficient keep-alive interval, in the manner
described herein with relation to step 210.

FIG. 3 illustrates example details regarding how the step of
determining an efficient keep-alive interval at 210 may be
accomplished. As shown at 302, determining may include
setting a test connection keep-alive interval to the predeter-
mined safe value. As shown at 304, the method may include
setting a data connection keep-alive interval to a current value
of'the test connection keep-alive interval. At 306, the method
may include incrementing the test connection keep-alive
interval by a predetermined increment value.

At 308, the method may further include sending a keep-
alive message from the client to the server, at the incremented
test connection keep-alive interval, over the test connection.
As illustrated at 310, the method may include determining
whether an acknowledgment to the keep-alive message sent
at 308 is received from the server via the test connection. If
YES at 310, then the current test keep-alive interval is deemed
to be safe, and the method loops back to 304, to set the data
connection keep-alive interval to the current test connection
keep-alive interval value, increment the test connection keep-
alive value, and send another keep-alive message on the test
connection at 304-308.

The method loops in this manner on one or more passes
through the control loop illustrated at steps 304-310 until at
310 it is determined that no acknowledgement is received on
the test connection in response to a keep-alive message sent at
308. If no acknowledgement is received at 310, the method
proceeds to 312, where the method includes checking the
status of the data connection. At 314, to check the status of the
data connection, the method includes determining whether an
acknowledgement has been received on the data connection,
for example, during a concurrent time interval.

At 316, if it is determined that no acknowledgment was
received on the data connection, then the method may include
returning or outputting a message indicating that no efficient
keep-alive value was computed due to a network failure.

On the other hand, at 318, if it is determined that an
acknowledgement from the server was received on the data
connection, for example, during a concurrent time interval,
then the method includes decrementing the test connection
keep-alive interval by a decrement value. The decrement
value may be, for example, a mid-point between a current test
connection keep-alive interval and the data connection keep-
alive interval, which it will be appreciated is a previous value
of the test connection keep-alive interval on a most recent
pass through the decrementing step at 318.

At 320, the method may include determining if the test
connection keep-alive interval is less than or equal to the data
connection keep-alive interval. If it is determined that the test
connection keep-alive interval is not less than or equal to the
data connection keep-alive interval, then the method loops
back to step 308, where another keep-alive message is sent on
the test connection, for evaluation as to whether an acknowl-
edgement is received from the server, and subsequent decre-
menting (or incrementing) of the test connection keep-alive
interval.

Ifit is determined at 320 that the test connection keep-alive
interval is less than or equal to the data connection keep-alive
interval, then the method proceeds to 322, and includes
returning or outputting an output value indicating the current
value of the data connection keep-alive value as the efficient
keep-alive value computed by step 210 in FIG. 2. It will be
appreciated that although the data connection keep-alive
value is indicated at 214 in FIG. 2 as being set to the efficient
keep-alive interval following the determining step at 210, in

10

15

20

25

30

35

40

45

50

55

60

65

8

the illustrated embodiment of FIG. 3 the step of 214 of FIG.
2 occurs during the final pass through step 304 of FIG. 3.

Inone example implementation of the method illustrated in
FIG. 3, it will be appreciated that steps 302-306 and 318 may
be implemented by the adjustment module 24, steps 308, 316
and 322 may be implemented by the communication module
23, and steps 310-314 and 320 may be implemented by the
determination module 25.

By incrementing and decrementing the keep-alive value on
successive passes through the control loop just described, it
will be appreciated that the keep-alive interval applied to the
data connection will approach the networking device time-
out value without exceeding it, thereby achieving an a stable
and efficient operation of the data connection that minimizes
contacts between the client and server, and conserves com-
munication bandwidth and power, while at the same time
avoiding a forced connection time-out by the networking
device. This process is further illustrated in FIG. 5, discussed
below.

It will be appreciated that in some embodiments of the
method described above, the networking device may be one
or more of a network address translation device, firewall, load
balancer, or other suitable networking device, and the client
may be one or more of a mobile computing device, portable
data assistant, desktop computing device, laptop computing
device, medial player device, mobile telephone, or other suit-
able computing device. In one specific embodiment, the client
is a mobile telephone and the networking device is a network
address translation device that functions as an access point in
a mobile telephone network.

In some embodiments, it will be appreciated that the server
may be configured to use a test group of clients to determine
a keep-alive interval, in order to minimize the risk that con-
nection particularities of one client would unduly affect the
keep-alive intervals communicated by the server to other
clients. Thus, the method may further include at the server,
selecting a test group from among the plurality of clients, and
receiving an efficient keep-alive interval from each client in
the test group. If a statistical variance between the efficient
keep-alive intervals determined for the clients in the test
group is below a threshold value, then the method may
include computing an aggregate efficient keep-alive interval
based on the test group, and storing the aggregate efficient
keep-alive interval at the server for use with other client
devices connected to the server via the networking device. If
the variance is not below a threshold value, outlying keep-
alive values may be thrown out, or a new test group selected,
until a variance below the threshold value is found.

By implementation of the method described above, a reli-
able and efficient keep-alive interval may be determined on a
client and subsequently distributed to a plurality of clients
connected to the same or a related networking device via a
server, avoiding repeatedly calculating a keep-alive interval
for each client. This can reduce bandwidth use and power
consumption, particularly for mobile devices that must trans-
mit a signal wirelessly to a remote receiver in order to send
each keep-alive message. When implemented across large
networks, the method may result in substantial power and
bandwidth savings in the aggregate, compared with calculat-
ing an efficient keep-alive interval for each device on the
network. Networking data connection stability is also pro-
moted since the efficient keep-alive interval is computed
using a test connection separate from the data connection.
The value of the efficient keep-alive interval that is applied to
the data connection may substantially approach the time-out
value of the networking device, but does not exceed it and
cause networking interruption, as is illustrated in FIG. 4.

US 9,313,236 B2

9

FIG. 4 illustrates a graph of example keep-alive intervals
for a data connection and a test connection, which have been
determined according to the methods of FIGS. 2-3. As shown,
the magnitudes of the keep-alive intervals (KA) are indicated
on the y-axis and time is on the x-axis. The time-out value of
the networking device is delineated via line 501. Initially, a
test connection keep-alive interval, delineated via line 502,
may be set at KA, (a safe value known to be below the
networking device connection time out value 501) and a data
connection keep-alive interval, delineated via line 504, may
be also be set at KA, as discussed above in relation to step
302 and 304 of FIG. 3. As the method proceeds, in each pass
through step 306 of FIG. 3, the test connection keep-alive
interval is incremented, as is illustrated by the stair-step
climbing pattern of the line 502 at t0, t1, t2. At each pass
through step 304 of FIG. 3, the data connection keep-alive
interval is also incremented by the method of FIG. 3, in a
manner that lags the test keep-alive interval, as shown at line
504.

Once the test keep-alive interval exceeds the networking
device time-out value, no acknowledgement is sent from the
server to the client, causing the client to decrement the test
keep-alive interval, as indicated at t4, but not the data con-
nection keep-alive interval. If the decremented test connec-
tion keep-alive interval is less than or equal to the data con-
nection keep-alive interval, as determined at 320 in FIG. 3,
then the method determines that it has found the efficient
keep-alive value, and outputs the current value for the data
connection keep-alive interval as the efficient keep-alive
interval.

As described above, the above described systems and
methods allow an efficient and reliable keep-alive interval to
be established for a client on a network, which approaches but
does not exceed the time-out value of a networking device.
The efficient keep-alive interval may then be distributed to a
plurality of additional clients on the network, decreasing the
network processing power, client battery use, etc. Therefore,
the network operating costs and energy consumption may be
significantly reduced in the aggregate.

It will be appreciated that the embodiments described
herein may be implemented, for example, via computer-ex-
ecutable instructions or code, such as programs, stored on a
computer-readable storage medium and executed by a com-
puting device. Generally, programs include routines, objects,
components, data structures, and the like that perform par-
ticular tasks or implement particular abstract data types. As
used herein, the term “program” may connote a single pro-
gram or multiple programs acting in concert, and may be used
to denote applications, services, or any other type or class of
program. Likewise, the terms “computer” and “computing
device” as used herein include any device that electronically
executes one or more programs.

It will further be understood that the configurations and/or
approaches described herein are exemplary in nature, and that
these specific embodiments or examples are not to be consid-
ered in a limiting sense, because numerous variations are
possible. The specific routines or methods described herein
may represent one or more of any number of processing
strategies. As such, various acts illustrated may be performed
in the sequence illustrated, in other sequences, in parallel, or
in some cases omitted. Likewise, the order of any of the
above-described processes is not necessarily required to
achieve the features and/or results of the embodiments
described herein, but is provided for ease of illustration and
description.

It should be understood that the embodiments herein are
illustrative and not restrictive, since the scope of the invention

20

30

40

45

50

65

10

is defined by the appended claims rather than by the descrip-
tion preceding them, and all changes that fall within metes
and bounds of the claims, or equivalence of such metes and
bounds thereof are therefore intended to be embraced by the
claims.

The invention claimed is:

1. A method for use in communication between a plurality
of clients and a server, via respective networking devices,
comprising:

at the server, providing a data store configured to store

efficient keep-alive intervals received from the plurality
of clients via the respective networking devices;
selecting a test group from among the plurality of clients,
wherein the test group are client devices connected to the
server via a same or related networking device;
receiving an individual efficient keep-alive interval from
each client in the test group;

if a statistical variance between the individual efficient

keep-alive intervals determined for the clients in the test
group is below a threshold value, then computing an
aggregate efficient keep-alive interval based on the test
group, and storing the aggregate efficient keep-alive
interval in the data store of the server as an efficient
keep-alive interval for use with other client devices con-
nected to the server via the same or related networking
device;

receiving a request for a data connection from a requesting

client connected to the server via a first networking
device;

querying the data store to determine if a cached efficient

keep-alive interval for the first networking device is
present in the data store;

if the cached efficient keep-alive interval is present, send-

ing the cached efficient keep-alive interval from the
server to the requesting client for application to the data
connection.

2. The method of claim 1, further comprising, if no cached
efficient keep-alive interval is present at the server, then:

receiving a request to establish a test connection between

the server and the client.

3. The method of claim 2, further comprising, if no cached
efficient keep-alive interval is present at the server, then:

setting a predetermined safe keep-alive value;

storing the predetermined safe keep-alive value at the

server; and

sending the predetermined safe keep-alive value from the

server to the requesting client, to cause the requesting
client to set the keep-alive value for the data connection
to the predetermined safe keep-alive value.
4. The method of claim 3, further comprising, if no cached
efficient keep-alive interval is present at the server, then:
determining an efficient keep-alive interval for communi-
cation between the client and the server via the first
networking device using the test connection, by, on each
of one or more passes through a control loop:

receiving a keep-alive message from the client at the server,
at an increasingly incremented test connection keep-
alive interval, over the test connection while concur-
rently exchanging data over the data connection;

sending an acknowledgment to the client in response to the
keep-alive message successfully received on the test
connection; and

after sending the acknowledgment, receiving from the cli-

ent via the test connection a new efficient keep-alive
interval set to the test connection keep-alive interval
value.

US 9,313,236 B2

11

5. The method of claim 3, wherein the predetermined safe
keep-alive value is sent to the client during establishment of
the data connection.

6. The method of claim 4, further comprising,

receiving a request at the server from the client to set the

data connection keep-alive interval to an efficient keep-
alive interval determined at the client upon completion
of the control loop;

receiving a message containing the efficient keep-alive

interval from the requesting client; and

caching the efficient keep-alive interval in the data store for

availability to other requesting clients.

7. The method of claim 1, further comprising:

after receiving the request, identifying from the request at

least one of an APN, DNS suffix and subnet of the
requesting client;

wherein querying the data store includes determining if an

efficient keep-alive interval has been stored for the at
least one of the APN, DNS suffix and subnet of the
requesting client.

8. A method for use in communication between a plurality
of clients and a server, via respective networking devices,
comprising:

at the server, providing a data store configured to store

efficient keep-alive intervals received from the plurality
of clients via the respective networking devices;
selecting a test group from among the plurality of clients,
wherein the test group are client devices connected to the
server via a same or related networking device;
receiving an individual efficient keep-alive interval from
each client in the test group;

if a statistical variance between the individual efficient

keep-alive intervals determined for the clients in the test
group is below a threshold value, then computing an
aggregate efficient keep-alive interval based on the test
group, and storing the aggregate efficient keep-alive
interval in the data store of the server as an efficient
keep-alive interval for use with other client devices con-
nected to the server via the same or related networking
device;

receiving a first request for a first data connection from a

first requesting client connected to the server via a first
networking device;

querying the data store to determine if a cached efficient

keep-alive interval for the first networking device is
present in the data store;

upon determining that no cached efficient keep-alive inter-

val is present in the data store, then:
sending a predetermined safe keep-alive value from the
server to the first requesting client, to cause the first
requesting client to set the keep-alive value for the
data connection to the predetermined safe keep-alive
value;
receiving a request to establish a test connection
between the server and the first requesting client;
determining an efficient keep-alive interval for commu-
nication between the first requesting client and the
server via the networking device using the test con-
nection, by, on each of one or more passes through a
control loop:
receiving a keep-alive message from the client at the
server, at an increasingly incremented test connec-
tion keep-alive interval, over the test connection
while concurrently exchanging data over the data
connection, until no more keep-alive messages are
received on the test connection;

10

15

20

25

30

35

40

45

50

55

60

65

12

sending an acknowledgment to the first requesting
client in response to each keep-alive message suc-
cessfully received on the test connection; and
after completion of the control loop, receiving from the
first requesting client a new efficient keep-alive inter-
val determined by the first requesting client, which is
set to a largest value for the test connection keep-alive
interval at which an acknowledgement was sent by the
server during the control loop;
caching the efficient keep-alive interval in the data store
for availability to other requesting clients;
receiving a second request for a second data connection
from a second requesting client connected to the server
via a same or a related networking device as the first
requesting client;
querying the data store to determine if a cached efficient
keep-alive interval is present in the data store which has
been received from the first requesting client connected
to the same or the related networking device and stored
in the data store; and
upon determining that the cached efficient keep-alive inter-
val is present in the data store, sending the cached effi-
cient keep-alive interval from the server to the second
requesting client for application to the data connection.
9. A computing system, comprising: a server comprising a
data store configured to store efficient keep-alive intervals
received from a plurality of clients via respective networking
devices, and a processor coupled to memory, the processor
configured to: select a test group from among the plurality of
clients, wherein the test group are client devices connected to
the server via a same or related networking device; receive an
individual efficient keep-alive interval from each client in the
test group; determine a statistical variance between the indi-
vidual efficient keep-alive intervals determined for the clients
in the test group; if the statistical variance is below a threshold
value, then compute an aggregate efficient keep-alive interval
based on the test group, and store the aggregate efficient
keep-alive interval in the data store of the server as an efficient
keep-alive interval for use with other client devices connected
to the server via the same or related networking device;
receive a request for a data connection from a requesting
client connected to the server via a first networking device;
determine if a cached efficient keep-alive interval for the first
networking device is present in the data store; if the cached
efficient keep-alive interval is present, send the cached effi-
cient keep-alive interval to the requesting client for applica-
tion to the data connection.
10. The computing system of claim 9, wherein the proces-
sor is further configured to:
if no cached efficient keep-alive interval is present at the
server, then:
receive a request to establish a test connection between
the server and the client.
11. The computing system of claim 10, wherein the pro-
cessor is further configured to:
if no cached efficient keep-alive interval is present at the
server, then:
set a predetermined safe keep-alive value;
store the predetermined safe keep-alive value at the
server; and
send the predetermined safe keep-alive value from the
server to the requesting client, to cause the requesting
client to set the keep-alive value for the data connec-
tion to the predetermined safe keep-alive value.
12. The computing system of claim 11, wherein the prede-
termined safe keep-alive value is sent to the client during
establishment of the data connection.

US 9,313,236 B2

13 14
13. The computing system of claim 11, wherein the pro- 14. The computing system of claim 13, wherein the pro-
cesser is further configured to: cessor is further configured to:
if no cached efficient keep-alive interval is present at the receive a request at the server from the client to set the data
server, then: connection keep-alive interval to an efficient keep-alive
determine an efficient keep-alive interval for communi- 5 interval determined at the client upon completion of the
cation between the client and the server via the first control loop;

receive a message containing the efficient keep-alive inter-
val from the requesting client; and
cache the efficient keep-alive interval in the data store for
10 availability to other requesting clients.
15. The computing system of claim 9, wherein the proces-
sor is further configured to:
after receiving the request, identify from the request at least
one of an APN, DNS suffix and subnet of the requesting
15 client;
wherein to query the data store, the processor is further
configured to determine if an efficient keep-alive inter-
val has been stored for the at least one of the APN, DNS
suffix and subnet of the requesting client.

networking device using the test connection, by, on

each of one or more passes through a control loop:

receive a keep-alive message from the client at the
server, at an increasingly incremented test connec-
tion keep-alive interval, over the test connection
while concurrently exchanging data over the data
connection;

send an acknowledgment to the client in response to
the keep-alive message successfully received on
the test connection; and

after sending the acknowledgment, receive from the
client via the test connection a new efficient keep-
alive interval set to the test connection keep-alive
interval value. ¥k k% %

